Better PHP Documentation
opinionated
Open main menu
Get Started
Documentation
Community
Training
Better PHP Documentation
Close menu
Get Started
Documentation
Community
Training
Log in
Change language:
English
German
Spanish
French
Italian
Japanese
Brazilian Portuguese
Russian
Turkish
Ukrainian
Chinese (Simplified)
Other
FANN (Fast Artificial Neural Network)
Introduction
Installing/Configuring
Requirements
Installation
Resource Types
Predefined Constants
Examples
XOR training
Fann Functions
fann_cascadetrain_on_data
β Trains on an entire dataset, for a period of time using the Cascade2 training algorithm
fann_cascadetrain_on_file
β Trains on an entire dataset read from file, for a period of time using the Cascade2 training algorithm
fann_clear_scaling_params
β Clears scaling parameters
fann_copy
β Creates a copy of a fann structure
fann_create_from_file
β Constructs a backpropagation neural network from a configuration file
fann_create_shortcut
β Creates a standard backpropagation neural network which is not fully connectected and has shortcut connections
fann_create_shortcut_array
β Creates a standard backpropagation neural network which is not fully connectected and has shortcut connections
fann_create_sparse
β Creates a standard backpropagation neural network, which is not fully connected
fann_create_sparse_array
β Creates a standard backpropagation neural network, which is not fully connected using an array of layer sizes
fann_create_standard
β Creates a standard fully connected backpropagation neural network
fann_create_standard_array
β Creates a standard fully connected backpropagation neural network using an array of layer sizes
fann_create_train
β Creates an empty training data struct
fann_create_train_from_callback
β Creates the training data struct from a user supplied function
fann_descale_input
β Scale data in input vector after get it from ann based on previously calculated parameters
fann_descale_output
β Scale data in output vector after get it from ann based on previously calculated parameters
fann_descale_train
β Descale input and output data based on previously calculated parameters
fann_destroy
β Destroys the entire network and properly freeing all the associated memory
fann_destroy_train
β Destructs the training data
fann_duplicate_train_data
β Returns an exact copy of a fann train data
fann_get_activation_function
β Returns the activation function
fann_get_activation_steepness
β Returns the activation steepness for supplied neuron and layer number
fann_get_bias_array
β Get the number of bias in each layer in the network
fann_get_bit_fail
β The number of fail bits
fann_get_bit_fail_limit
β Returns the bit fail limit used during training
fann_get_cascade_activation_functions
β Returns the cascade activation functions
fann_get_cascade_activation_functions_count
β Returns the number of cascade activation functions
fann_get_cascade_activation_steepnesses
β Returns the cascade activation steepnesses
fann_get_cascade_activation_steepnesses_count
β The number of activation steepnesses
fann_get_cascade_candidate_change_fraction
β Returns the cascade candidate change fraction
fann_get_cascade_candidate_limit
β Return the candidate limit
fann_get_cascade_candidate_stagnation_epochs
β Returns the number of cascade candidate stagnation epochs
fann_get_cascade_max_cand_epochs
β Returns the maximum candidate epochs
fann_get_cascade_max_out_epochs
β Returns the maximum out epochs
fann_get_cascade_min_cand_epochs
β Returns the minimum candidate epochs
fann_get_cascade_min_out_epochs
β Returns the minimum out epochs
fann_get_cascade_num_candidate_groups
β Returns the number of candidate groups
fann_get_cascade_num_candidates
β Returns the number of candidates used during training
fann_get_cascade_output_change_fraction
β Returns the cascade output change fraction
fann_get_cascade_output_stagnation_epochs
β Returns the number of cascade output stagnation epochs
fann_get_cascade_weight_multiplier
β Returns the weight multiplier
fann_get_connection_array
β Get connections in the network
fann_get_connection_rate
β Get the connection rate used when the network was created
fann_get_errno
β Returns the last error number
fann_get_errstr
β Returns the last errstr
fann_get_layer_array
β Get the number of neurons in each layer in the network
fann_get_learning_momentum
β Returns the learning momentum
fann_get_learning_rate
β Returns the learning rate
fann_get_MSE
β Reads the mean square error from the network
fann_get_network_type
β Get the type of neural network it was created as
fann_get_num_input
β Get the number of input neurons
fann_get_num_layers
β Get the number of layers in the neural network
fann_get_num_output
β Get the number of output neurons
fann_get_quickprop_decay
β Returns the decay which is a factor that weights should decrease in each iteration during quickprop training
fann_get_quickprop_mu
β Returns the mu factor
fann_get_rprop_decrease_factor
β Returns the increase factor used during RPROP training
fann_get_rprop_delta_max
β Returns the maximum step-size
fann_get_rprop_delta_min
β Returns the minimum step-size
fann_get_rprop_delta_zero
β Returns the initial step-size
fann_get_rprop_increase_factor
β Returns the increase factor used during RPROP training
fann_get_sarprop_step_error_shift
β Returns the sarprop step error shift
fann_get_sarprop_step_error_threshold_factor
β Returns the sarprop step error threshold factor
fann_get_sarprop_temperature
β Returns the sarprop temperature
fann_get_sarprop_weight_decay_shift
β Returns the sarprop weight decay shift
fann_get_total_connections
β Get the total number of connections in the entire network
fann_get_total_neurons
β Get the total number of neurons in the entire network
fann_get_train_error_function
β Returns the error function used during training
fann_get_train_stop_function
β Returns the stop function used during training
fann_get_training_algorithm
β Returns the training algorithm
fann_init_weights
β Initialize the weights using Widrow + Nguyenβs algorithm
fann_length_train_data
β Returns the number of training patterns in the train data
fann_merge_train_data
β Merges the train data
fann_num_input_train_data
β Returns the number of inputs in each of the training patterns in the train data
fann_num_output_train_data
β Returns the number of outputs in each of the training patterns in the train data
fann_print_error
β Prints the error string
fann_randomize_weights
β Give each connection a random weight between min_weight and max_weight
fann_read_train_from_file
β Reads a file that stores training data
fann_reset_errno
β Resets the last error number
fann_reset_errstr
β Resets the last error string
fann_reset_MSE
β Resets the mean square error from the network
fann_run
β Will run input through the neural network
fann_save
β Saves the entire network to a configuration file
fann_save_train
β Save the training structure to a file
fann_scale_input
β Scale data in input vector before feed it to ann based on previously calculated parameters
fann_scale_input_train_data
β Scales the inputs in the training data to the specified range
fann_scale_output
β Scale data in output vector before feed it to ann based on previously calculated parameters
fann_scale_output_train_data
β Scales the outputs in the training data to the specified range
fann_scale_train
β Scale input and output data based on previously calculated parameters
fann_scale_train_data
β Scales the inputs and outputs in the training data to the specified range
fann_set_activation_function
β Sets the activation function for supplied neuron and layer
fann_set_activation_function_hidden
β Sets the activation function for all of the hidden layers
fann_set_activation_function_layer
β Sets the activation function for all the neurons in the supplied layer
fann_set_activation_function_output
β Sets the activation function for the output layer
fann_set_activation_steepness
β Sets the activation steepness for supplied neuron and layer number
fann_set_activation_steepness_hidden
β Sets the steepness of the activation steepness for all neurons in the all hidden layers
fann_set_activation_steepness_layer
β Sets the activation steepness for all of the neurons in the supplied layer number
fann_set_activation_steepness_output
β Sets the steepness of the activation steepness in the output layer
fann_set_bit_fail_limit
β Set the bit fail limit used during training
fann_set_callback
β Sets the callback function for use during training
fann_set_cascade_activation_functions
β Sets the array of cascade candidate activation functions
fann_set_cascade_activation_steepnesses
β Sets the array of cascade candidate activation steepnesses
fann_set_cascade_candidate_change_fraction
β Sets the cascade candidate change fraction
fann_set_cascade_candidate_limit
β Sets the candidate limit
fann_set_cascade_candidate_stagnation_epochs
β Sets the number of cascade candidate stagnation epochs
fann_set_cascade_max_cand_epochs
β Sets the max candidate epochs
fann_set_cascade_max_out_epochs
β Sets the maximum out epochs
fann_set_cascade_min_cand_epochs
β Sets the min candidate epochs
fann_set_cascade_min_out_epochs
β Sets the minimum out epochs
fann_set_cascade_num_candidate_groups
β Sets the number of candidate groups
fann_set_cascade_output_change_fraction
β Sets the cascade output change fraction
fann_set_cascade_output_stagnation_epochs
β Sets the number of cascade output stagnation epochs
fann_set_cascade_weight_multiplier
β Sets the weight multiplier
fann_set_error_log
β Sets where the errors are logged to
fann_set_input_scaling_params
β Calculate input scaling parameters for future use based on training data
fann_set_learning_momentum
β Sets the learning momentum
fann_set_learning_rate
β Sets the learning rate
fann_set_output_scaling_params
β Calculate output scaling parameters for future use based on training data
fann_set_quickprop_decay
β Sets the quickprop decay factor
fann_set_quickprop_mu
β Sets the quickprop mu factor
fann_set_rprop_decrease_factor
β Sets the decrease factor used during RPROP training
fann_set_rprop_delta_max
β Sets the maximum step-size
fann_set_rprop_delta_min
β Sets the minimum step-size
fann_set_rprop_delta_zero
β Sets the initial step-size
fann_set_rprop_increase_factor
β Sets the increase factor used during RPROP training
fann_set_sarprop_step_error_shift
β Sets the sarprop step error shift
fann_set_sarprop_step_error_threshold_factor
β Sets the sarprop step error threshold factor
fann_set_sarprop_temperature
β Sets the sarprop temperature
fann_set_sarprop_weight_decay_shift
β Sets the sarprop weight decay shift
fann_set_scaling_params
β Calculate input and output scaling parameters for future use based on training data
fann_set_train_error_function
β Sets the error function used during training
fann_set_train_stop_function
β Sets the stop function used during training
fann_set_training_algorithm
β Sets the training algorithm
fann_set_weight
β Set a connection in the network
fann_set_weight_array
β Set connections in the network
fann_shuffle_train_data
β Shuffles training data, randomizing the order
fann_subset_train_data
β Returns an copy of a subset of the train data
fann_test
β Test with a set of inputs, and a set of desired outputs
fann_test_data
β Test a set of training data and calculates the MSE for the training data
fann_train
β Train one iteration with a set of inputs, and a set of desired outputs
fann_train_epoch
β Train one epoch with a set of training data
fann_train_on_data
β Trains on an entire dataset for a period of time
fann_train_on_file
β Trains on an entire dataset, which is read from file, for a period of time
FANNConnection
β The FANNConnection class
FANNConnection::__construct
β The connection constructor
FANNConnection::getFromNeuron
β Returns the postions of starting neuron
FANNConnection::getToNeuron
β Returns the postions of terminating neuron
FANNConnection::getWeight
β Returns the connection weight
FANNConnection::setWeight
β Sets the connections weight
Found A Problem?
Learn How To Improve This Page
β’
Submit a Pull Request
β’
Report a Bug
οΌ
add a note
User Contributed Notes
There are no user contributed notes for this page.
0
pcntl_sigtimedwait
Waits for signals, with a timeout
0
similar_text
Calculate the similarity between two strings
0
boolval
Get the boolean value of a variable
0
curl_multi_close
Close a set of cURL handles
0
imap_body
Read the message body
0
mb_strpos
Find position of first occurrence of string in a string
0
pg_send_prepare
Sends a request to create a prepared statement with the given parameters, without waiting for completion
0
swoole_native_socket_bind
0
Arr::prependKeysWith
0
zend_version
Gets the version of the current Zend engine
^